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In  this paper we concern ourselves with the theoretical description of curved 
converging shock waves, where nonlinear interaction effects, between the shock fronts 
and the flow behind them, and refraction effects are equally important. In  a 
non-viscous, isoenergetic and isentropic flow the problem can be described by a 
nonlinear wave equation for the pressure field. This equation then admits an 
analytical solution with the help of the method of strained coordinates provided that 
the nonlinear terms contain only derivatives with respect to two independent 
variables. This restrictive condition is approximately fulfilled if the incoming wave 
is only slightly curved. 

Replacing in the solution the strained coordinates - which themselves depend on 
the solution - by physical coordinates, we get an accurate description of the 
transition from the shock pattern obtained by the geometric-acoustics approach (very 
weak shocks) to the pattern determined by Whitham’s shock dynamics (strong 
shocks). Furthermore, the solution describes the complete flow field and agrees very 
favourably with experimental data by Sturtevant & Kulkarny. 

1. Introduction 
Interest in shock propagation occurs in a variety of fields : well-known examples 

include the generation and propagation of sonic booms caused by supersonically flying 
aircraft, shock propagation in shock tubes in which different media are investigated 
under diverse flow conditions (including chemical reactions), and the phenomenon 
of thunder, to mention only a few. The propagation behaviour of weak shock-wave 
systems, and especially the interaction between single shocks of the system and the 
interaction between shocks and the flow field behind them, is still a very fascinating 
and only partly solved problem in fluid mechanics, despite the fact that  basic results 
were already obtained more than 100 years ago. (A short survey of the most 
important achievements of the last century in nonlinear wave propagation can be 
found in a paper by Rott (1980).) 

The main topic of the present paper is concerned with shock propagation of 
non-planar shock fronts. These waves easily occur when plane waves travel through 
inhomogeneous (for instance, layered) media or when the shock generation is time- 
and (or) space-dependent. Here, it is a well-established fact that a shock front, once 
curved, will, if concave, then converge as i t  propagates, to form focal points or 
caustics, provided that the amplitude of the converging wave is sufficently small. 
As an illustrative example we may think of a sonic boom caused by manoeuvring 
aircraft. 

I n  many cases the incoming shock front has a minimum radius of curvature R,, 
which leads to a cusp in the caustic, also called an ar6te. A qualitative sketch showing 
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FIGURE 1 .  Propagation of converging shock waves: (a) according to geometric acoustics, 
( b )  according to shock dynamics (Whitham). -, shock waves; --, caustic; ---, rays. 

the development of such a cusped caustic is reproduced in figure 1 (a). Here, within 
the framework of geometric acoustics, caustics are understood as the envelopes of 
converging ray tubes. This representation describcs sufficiently accurately the flow 
pattern ; however, i t  does not allow for an estimation of the actual pressure amplitude 
near the caustic, because a geometric wave theory implies zero differential cross- 
sections of the ray tubes a t  the caustic, and thereby leads to infinitely large pressure 
values. Furthermore, such a theory would predict no pressure variation a t  all of a 
focused wave outside the two branches of the caustic. Pressure distributions which 
actually occur near a caustic were measured, for instance, by Vallee (1969) (see also 
Wanner et al. 1972). 

If the amplitude of the incoming concavely curved wave is no longer small, a quite 
different pattern of the shock location will be displayed, like that plotted in figure 
l ( 6 ) .  This field may be explained by a modified ray theory - also called Whitham’s 
shock dynamics. It takes into account that  the propagation speed of a shock front 
increases with increasing shock strength, while the propagation direction of the wave 
remains always normal t o  its front. These two effects turn the shock front and bend 
the rays, and therefore prevent the crossing of ray tubes. A detailed theoretical 
investigation of shock dynamics was given by Whitham (1957, 1959, 1974). 

Unfortunately, both of the geometric theories touched on above neither account 
for nonlinear interactions between shock fronts and the flow behind them nor account 
for refraction effects, which turn out to be equally important for the calculation of 
the actual pressure time history. Therefore the theories are not really suitable for a 
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satisfactory investigation of flow fields with weak, or moderately strong, non-planar 
shock waves. 

First attempts to overcome the difficulties related to infinite peak overpressures 
obtained by geometric acoustics were very similar to those of ‘ boundary-layer ’ 
theories (Lighthill 1950; Buchal & Keller 1960). There the flow field is divided into 
two regions: the first is the region outside the vicinity of the caustic in which 
geometric theories can be applied and yield reasonable results, and the second is the 
region near the caustic itself - the so-called boundary-layer region - in which the 
equations of motion are reduced to modified transonic differential equations. The 
asymptotically valid equations of motion for these ‘outer’ and ‘inner’ regions can 
then be solved, a t  least in principle, by using the method of matched asymptotic 
expansions. 

Progressing along that line, Guiraud (1965), Hayes (1968), and Seebass (1971) 
proposed ‘transonic ’ theories. Their basic idea was to introduce a coordinate system 
whose origin moves with the velocity a, n (a ,  is the speed of sound and n is the normal 
vector of the incoming wave a t  the caustic) along the caustic. I n  this coordinate 
system the flow turns out to be, with restrictions, a steady transonic flow field. The 
focusing of shock waves now appears as a reflection of shock waves at the sonic line. 
Unfortunately, the corresponding solutions obtained by Seebass for the modified 
transonic equations reveal certain unrealistic properties. I n  the physical plane the 
solutions do not cover the entire flow field, but leave a ‘gap’ a t  the front of the 
incoming signal. For this flow region, additional assumptions were therefore necessary. 
A detailed discussion of the problem and its roots, and a method to  get improved 
solutions of the transonic equations, were given by Obermeier (1976). 

I n  1978, Cramer & Seebass took up the problem of focused shock waves again. On 
the basis of the nonlinear wave equation for an unsteady potential flow, they derived 
a similarity law for very weak shock waves, which allows a determination of the 
dependence of the pressure levels and the amplification laws on the gas properties 
and on the initial shape and strength of the incoming shock. The method is only valid 
for extremely low shock strength ; furthermore, an actual solution, expressing the 
time and space dependence of the flow field, has not been given yet. 

Further solutions of the steady transonic equation were found by Fung (1980) for 
special pressure signatures of the incoming wave. 

Systematic experimental investigations, carried out by Sturtevant & Kulkarny 
(1976), improved our understanding of converging flow fields considerably. Using 
shadowgraph techniques and pressure measurements, they studied the focusing 
behaviour of curved shock waves for a wide range of different geometries and for 
varying shock strength. 

Stimulated by their results, we have developed a theoretical method which takes 
account of nonlinear effects as we11 as of refraction effects in a feasible approximation. 
The method will, in particular, allow an explanation of the transition from the limit 
of geometric acoustics to the state of moderately strong shock waves. It also gives 
a satisfactory explanation of the varying shock pattern as a function of the amplitude 
of the incoming shock waves, which was found experimentally by Sturtevant & 
Kulkarny (1976). Whitham’s limit of shock dynamics itself (strong shocks) is not, 
however, covered by our approximation. 
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2. Basic equations and assumptions 
Our investigation is based on the equations of an unsteady isentropic and 

isoenergetic flow, where viscosity effects are negligible. Additionally, we assume that 
the strength of the curved shock fronts is still small enough to justify neglect of 
gradients of entropy production behind the shock waves. Consequently, the flow field 
may be written in terms of a nonlinear wave equation for the flow potential cp: 

Here a, is the speed of sound in the medium a t  rest, K the ratio of specific heats, 
x = {xl, x2, x3} is the space coordinate and t the time coordinate. In accordance with 
the neglect of entropy variations behind curved shock waves, terms of third order 
in (1) have been neglected, too. 

To solve this equation, we need, in addition, boundary conditions. We therefore 
assume that the time history of the pressure of the incoming wave and its normal 
derivative is prescribed a t  a surface S (figure 2), which is sufficiently far away from 
the location where geometric wave theories predict a caustic. To be more precise, we 
require the lengthscale of the pressure signal to be small compared with the minimum 
radius of curvature R, of the surface S .  I n  addition, outgoing waves have t o  
fulfil - roughly speaking - Sommerfeld’s radiation conditions. We will make the 
last condition explicit later on. 

As the boundary conditions are given for the pressure field but not for the flow 
potential, it turns out to be preferable to replace (1)  by an equation for the pressure 
field p defined by Bernoulli’s equation : 

where p, is the density of the medium a t  rest. 
For the sake of simplicity, i t  is also reasonable to use non-dimensional variables 

throughout the succeeding calculations. Even though there is no unique way to select 
non-dimensional variables a t  the present &age, the discussions following later suggest 
as an appropriate choice: 

# l = s P ,  y = € =  R K P  
a, P o 4  K 

a R  
x = R o X ,  t = A T ,  - - (3) 

Here e is the dimensionless maximum of the pressure amplitude of the unfocused 
signal at S. For a sonic boom a characteristic s-value is of the order e = 
(corresponding to  100 N/m2). 

Introducing (2) and (3) into (1) yields 

The last two terms, still depending on (V$J)~, will be replaced by pressure terms 
later on. 

The problem we are now faced with is the following. We have to solve a nonlinear 
wave equation for a converging flow field that includes shock waves. This flow field 
is governed by two distinct, competing effects: (i) the geometry of the shock pattern 
and (ii) a nonlinear interaction of the shock fronts with the flow behind them, known 
as the steepening effect. The well-understood plane waves are free of the first effect, 
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FIGURE 2. Coordinates and notation. 

linear non-planar waves are free of the second. Solutions of (4) for flow fields where 
both effects are of comparable importance seem to be known only for highly 
symmetrical flow geometries, e.g. spherical flows. In  all other cases approximations 
are necessary, which usually are based on the assumption that one of the two effects 
is overwhelmingly present and can be dealt with analytically, while the second effect 
plays a secondary role only and can be regarded as a perturbation of the first. 

We assume here that the flow field in question can be viewed, in a first 
approximation, as a nonlinear plane wave and that the geometric effects play the role 
of perturbations. This approach requires that the incoming wave is only slightly 
curved and its normal vector n does not deviate very much from the main 
propagation direction, i.e. the X ,  axis: thus 

n = (1  - = @ 2 + 1 1 9 ~ ,  24 6-183 6 1, omax + 1. ( 5 )  

Here 8 is the angle between n and the X ,  axis; furthermore, we confine the 
investigations to two-dimensional flow fields only. 

The condition ( 5 )  is equivalent to keeping those nonlinear terms in ( 4 )  that  contain 
only derivatives with respect to X ,  and T ,  but ignoring nonlinear terms (not linear 
ones) that  contain derivatives with respect to X,. These approximations, which are 
equivalent to those commonly applied to  dcrive the equation for thc potential of an 
unsteady transonic flow, yield for propagating waves 

Introducing these relations into (4) leads to a considerably simplified wave equation : 

I n  the same approximation, ( 2 )  simplifies to 

P = - 4 T + O ( e 2 , ~ @ m a x ) ,  

which implies that (6) is equivalent to the transonic equation 
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or 

respectively. The less known equivalence between the latter two equations is valid 
because the difference between the nonlinear terms $x,$xIxl and - # T $ T T  is of 
the same order of smallness as terms already neglected in deriving the transonic 
equations. 

3. General solution 
The basic ideas of the method of strained coordinates may be found in textbooks ; 

therefore we confine our further explanations to the principal results. In  a first step 
we introduce strained coordinates of the following form into (6) : 

T = !F+€H(!F’,f t ) ,  X = X. (7)  

Here H is an unknown function. To determine this function we require that (i) (6) 
becomes linear in terms of strained coordinates, and (ii) the strained and the physical 
coordinates coincide at the surface S. Both conditions have to be fulfilled up to 
O(e2, drnaX) in accordance with previous approximations. 

We obtain 
(8a) 

K + 1  

2 K  
H = - - (1  +XI) P(F, f t )  + O(E,  ern,,), 

This result implies that we have succeeded in replacing the original nonlinear wave 
equation .by a linear wave equation. I ts  corresponding solution is correct to 
0(c2, &Irnax), i.e. nonlinear steepening effects with respect to the main flow direction 
(zl axis) and non-planar linear refraction effects are both taken into account. 

To determine the solution P of ( 8 b )  we can transfer the boundary condition at the 
surface S from the physical to the strained coordinates, as both coordinates coincide 
a t  S. Furthermore, we require that those parts of the pressure P which represent 
outgoing linear waves in terms of strained coordinates, fulfil Sommerfeld’s radiation 
condition. 

Considering these boundary conditions and the assumption that the distance 
between the observation point X and the surface S is large compared with the length 
of the incoming signal, the complete solution can be expressed in terms of a double 
integral of the form (see Buchal & Keller 1960) 

where p , ( w )  is the Fourier traneform of the incoming pressure signal at S: 
m 

& ( w )  = I-, P,(T) eiwT dT. 
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FIGURE 3. Pressure signature at the surface S with 10-4 < 
To, duration of the signal; q, shock-rise time. 

< 10-2; 

To evaluate the implicitly given solution of (9) we first have to specify the surface 
S and the time history of the pressure Ps(T). To that end we assume 

s - -  i + p 1 t q 3 ) ~ ~ ~ e ,  
f l (&,&): {?I - ( 

X,S = (1+P1813)sin8, 

where /3 > 0 is a free parameter. The form of S agrees qualitatively with the shape 
of the converging shock waves investigated experimentally by Sturtevant & Kulkarny 
(1976); quantitative differences are mainly caused by our restriction that X is only 
slightly curved. 

Furthermore, as the numerical evaluation of the integral (9) (including the 
determination of the Fourier transform) is still difficult for an arbitrary pressure 
signature P,(T) of the incoming wave, we restrict the investigation to N-waves with 
short but finite rise time q (figure 3). The slightly unusual assumption of a finite 
shock-rise time is justified as one has to keep in mind that from a physical point of 
view there are no relevant differences whether we choose TI > 0 or TI = 0 at S as a 
boundary condition, provided that T,  is sufficiently small in accordance with 
measured data. The only appropriate questions that could arise are the following. 
(i) Does the solution based on > 0 a t  S exhibit unrealistic pressure signatures at 
any point of the flow field 1 (ii) Are there any significant differences in terms of real 
coordinates between a solution based on % > 0 and a solution based on T ,  = 0 ? The 
answers are ‘no ’ in both cases; differences occur only in terms of strained coordinates, 
as we will explain later on. 

I n  a next step we evaluate the integral equation (9.1) in terms of strained 
coordinates. The main problem we are still left with is the oscillatory phase factor 
exp iw  IR(O)/R,-f;;l of its integrand. For this reason an ordinary numerical deter- 
mination of the integral seems to be rather hopeless, and we have to apply asymptotic 
methods. These calculations are confined in the present paper to a few typical 
locations in the ft-plane, which, however, will already allow a discussion of the entire 
flow field. Furthermore, as the flow field is symmetric with respect to the zl axis, 
we consider only the upper half-plane, with z2 2 0. 

(i) 8 = 0, which corresponds to the location of the cusp of the caustic. Here the general 
integral (9a )  simplifies to 
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with 5 = IPwliO. Neglecting the second term of the sum and performing the 5- 
integration we obtain 

where Ai ( z ) ,  Bi ( z )  are Airy functions with Ai (0) = 0.355 and Bi (0) = 0.615. 

be multiplied by 
The result means that each Fourier component of the incoming wave ps(w) has to 

2%nt 

(3PP 

where A = [Ai (0)2+ (0231 Bi (O))*]? and y = arctan to231 Bi (O)/Ai (O)]. 
(ii) 8 well within the area bounded by the two branches of the caustic. The caustic itself 

and its immediate vicinity are excluded. In this area (named A )  the phase function 
E = IR(O)/R0-8J has three distinct, simple extrema in correspondence with three 
separated waves found by geometric acoustics in A .  Thus i t  turns out that the method 
of steepest descent yields reasonable asymptotic approximations of (9  a ) .  Passing over 
the details of the algebra, we obtain 

-I(oltA ei($’+Y), 

00 

xJ p s ( w ) e x p [ i f n ( l - s g n ~ ( 8 $ ~ , 8 , ) ) + i w ( ~ ( ~ $ 1 , 8 , ) - ~ ) 1 d w ,  (12) 
-a, 

where 

F(e )  = (E(B,  8 A ) ) 2 ,  eSf , : {F‘(e)  = O}, 

F”(B) e+(~1Af248r?~ , )82+0(83) ;  

the upper sign is valid if Ost > 0, the lower sign if Ost < 0. 
In  this case the Fourier components are multiplied by a factor that  does not depend 

on the frequency w .  Furthermore, the phase shift is zero for the incoming signals and 
an for the outgoing, the focused signal. 

(iii) Along the upper branch of the caustic (8,) and in its vicinity. Considering the flow 
in a vicinity of a point 8, located on the caustic, its behaviour is determined by two 
contributions 4 and P2. One is due to  the incoming wave, which again is asymptotically 
given by the method of steepest descent as 

where o g p ’ ( O s t , 8 , )  = 0, F ” ( O s t , 8 , )  * 0,Ost  > O}, 18-8,l e 1 .  

The second contribution P 2 ( p , x )  is given by an expansion of the part of the 
integrand in ( 9 a )  that  represent the focused signal in 8 if 8 is in the vicinity of a 
point 8, on the caustic (18-8,I -4 11, i.e. if the two extreme Ogi and Ogi considered 
in (ii) coalesce : 
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with 

c = [&!337gj,k. 

This integral can be expressed by Airy functions (or by Bessel functions of order 
(see e.g. Abramowitz & Stegun 1964): 

Here the main result is that  the Fourier components decay exponentially for B > 0, 
in fact increasing with growing frequency w .  

For X = X,, i.e. a t  the caustic, where E ( d & , 8 , )  = E"(Ogj ,8 , )  = 0, the contrib- 
ution pZ simplifies to 

4. Numerical results 
4.1. Strained coordinates 

The asymptotic solutions in terms of an inverse Fourier transform, (1 1)-( 13), derived 
in $3 ,  can now be evaluated numerically. The most interesting results are summarized 
in figure 4. 

We find the following: 
(i) The shape of the incoming signal remains nearly unchanged outside the region 

bounded by the cusp and the two branches of the caustic. 
(ii) Refraction effects, which are included in our linear wave theory (but are not 

included in a geometric wave theory), limit the amplification of the focused signal 
and yield the typical signatures of a focused pressure distribution: a sharp peak 
followed by a strong expansion. 

(iii) The pressure amplitude is finite a t  the caustic and the amplification of the 
pressure behaves approximately like (T,/T,)-j for (see figure 5); 
details of these calculations are included in Obermeier (1976). Physically it means 
that the amplification is only weakly dependent on the rise time. However, i t  is also 
known that for an idealized rise time 7; = 0 the signature of a focused signal has 

< T,/T, Q 
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FIGURE 4. Summarized results according to the method of strained coordinates. 

singularities at the front and the rear shock. As we will show later, these singularities 
occur only in strained coordinates, but do not really affect the solution in terms of 
physical coordinates. 

(iv) The maximum amplification does not occur a t  the caustic but somewhat below 
(or above, respectively), as indicated by the dashed lines in figure 4. This result is 
explained by the fact that  each single Fourier component of the solution is expressed 
in terms of Airy functions Ai (I w IiB/(3C)1) which take their maximum value a t  
I w It B/(3C)4 z 1 ,  but not a t  the caustic ( B  = 0). Furthermore, in the immediate 
vicinity of the caustic the incoming converging waves are converted by refraction 
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FIQURE 6. Pressure distributions in terms of physical coordinates: ( a )  8 = 0, X ,  = 0 2 2 ,  X ,  = 0. 
p = 0 1 ,  q/T, = 10-2; (b )  0 0 1 , 0 2 2 , 0 , 0 1 ,  10-2; (c) 0 ~ 0 2 , 0 2 2 , 0 , 0 1 ,  10-2; (d )  0 0 2 , 0 3 , 0 , 0 1 ,  

effects into approximately plane waves, a result which is very similar to one obtained 
already by Debye (1909) for converging waves of light near focal points. This special 
behaviour of the solution near the caustic then implies that  the pattern of the ‘shock 
waves’ is not represented by a curve with a cusp a t  the caustic, as is suggested by 
geometric wave theories (see figure l a ) ,  but by curves which look more like a Y and 
have triple points inside the caustics. This outcome is in accordance with experimental 
data published by Sanai, Toong & Pierce (1976). 

(v) Outgoing solutions decay exponentially outside the caustic. Furthermore, as 
the high-frequency components of the signal decay faster than the low-frequency 
components, the pressure signatures become ‘rounded ’, again a result caused by 
refraction effects. 

4.2. Physical coordinates 

To evaluate the actual solution we still have to replace the strained coordinates by 
physical coordinates. For that purpose we consider the following : a t  any particular 
point a,, the solution in strained coordinates may be given by the expressions derived 
above. For very small E i t  is now obvious that the solutions in strained and in physical 
coordinates are approximately identical (figure 6 a ) .  If we increase the pressure 
amplitude E ,  the transformation between real and strained coordinates displays an 
increasing steepening of the pressure signature in terms of real coordinates (dashed 
line in figure 6b) .  This steepening leads to multivalued solutions, which, however, are 
physically unrealistic. Therefore it becomes necessary to introduce shock fronts by 
suitable shock-fitting techniques (solid line in figure 6b) .  For our purposes the 
equal-area rule turns out to be appropriate, and is consistent with simplifications and 
approximations which we have introduced into the equations before. 

An even further increase of E leads, finally, to  a steepening of the waves large enough 
that the shock fronts merge into a single shock wave (figure 6c) .  If we now keep E 
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Exponential decay , 
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I 
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FIGURE 7 .  Shock pattern of the front wave according to strained coordinates (---) and to 
physical coordinates (-). (a) Mach shock or shock disk, ( b )  crossed shock waves. 

constant, but move along the X, axis to  higher values, the amplitude of the outgoing 
focused wave decreases and the distance between the waves increases. Then, even 
though the steepening also increases with growing travel distance, we finally reach 
a point on the X, axis where the shock-fitting technique in terms of physical 
coordinates no longer yields a single shock, but separated ones again (figure 6 d ) .  

Corresponding calculations are possible for other X-coordinates and varying 
e-values. Based on these calculations, we may transform the time histories of the 
pressure field back into the X-plane. The resulting shock pattern of the leading wave 
system is shown qualitatively in figure 7. 

In  figure 7 (a), which corresponds to the pressure-time history shown in figure 6 ( c ) ,  
we realize that the solution yields a shock disk - also called a Mach shock - instead 
of three single shocks predicted by linear wave acoustics (equivalent to the solution 
in strained coordinates). However, if we move sufficiently far downstream (figure 7 b ) ,  
the shock-fitting technique no longer produces shock disks, but again crossover of 
shocks, i.e. folding of shocks reappears with a loop between the shocks. Nonetheless, 
the shock pattern itself still differs from the one obtained by the linear wave theory. 

Finally, if we vary p but keep E constant, we find that the point where the shock 
disks disappear moves upstream with increasing p (i.e. increasing curvature of S) and 
downstream with decreasing /3 (i.e. decreasing curvature of 8). 

These results agree very favourably with the experimental data obtained by 
Sturtevant & Kulkarny (1976) (see for instance their figure 7 and 18). The main 
quantitative differences between the experimental data and our theoretical method 
are based on the fact that  the latter is restricted to only slightly curved incoming 
shock waves. I n  addition, our method is based on the assumption that the shock 
strength E is at least smaller than 1 ,  otherwise entropy effects become important, 
which we have neglected. 

Until now, we confined the discussion to incident shock waves with very small but 
non-zero shock-rise times. I n  the following, those results are supplemented by the 
main results obtained for zero shock-rise time. 

> 0 and TI = 0 at S are As we have mentioned before, the boundary conditions 
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FIQURE 8. Qualitative sketch of shock fitting into pressuretime histories with singular peak 
amplitudes. (a )  Solution according to strained coordinates, ( b )  solution according to physical 
coordinates. 

equivalent from the physical point of view, while the first condition is preferable only 
because of its simpler algebra. Turning to the case TI = 0, one knows that the solution 
of a linear wave equation reveals singular behaviour for a focused pressure signal, 
i.e. the focused peaks of the signal behave either like P - In (AT) or P - (AT)-" with 
0 < a < 1 depending upon the observation point. Furthermore, as we have elaborated 
before, the transformation (7)  introducing the strained coordinates is determined in 
such a way that the nonlinear wave equation (6) in terms of real coordinates reduces 
to  a formally linear wave equation (8) in terms of strained coordinates. Therefore that 
part of the solution which describes the focused wave shows singular behaviour for 
T, = 0 as well, which then leads to the question as to whether or not these singularities 
affect the solution in real coordinates as well. 

The transformation (8a)  from strained coordinates to real ones yields, for any 
particular shock strength E > 0, a multivalued solution like the one in figure 8 ( b ) ,  
where the peak value and, consequently, the corresponding stretching of the 
coordinate, are infinitely large, but where the areas within the singular peaks remain 
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always finite. Therefore, the multivaluedness of the pressure signature can again be 
avoided by shock fronts fitted in according to the equal-area rule. The finiteness of 
the areas within the singular peaks now ensures that the location of the shock fronts 
(solid lines in figure 8 b )  and the maximum pressure amplitudes are very much the 
same whether one starts the calculation with the condition > 0 or TI = 0 a t  the 
surface S. 

5. Conclusion 
We have presented a mathematical approach which allows for the solution of a 

nonlinear wave equation for the pressure distribution in a flow field of weakly curved, 
converging shock waves, where the shock strength varies from weak to moderately 
strong. The method used describes sufficiently accurately the geometry of the shock 
pattern as a function of the shock strength, and it also describes correctly the 
nonlinear steepening effects of the flow behind the shocks. A still-open question is: 
How can one generalize the theory in a feasible way, or how can one develop an 
alternative approach to include non-planar, converging waves, which are no longer 
only weakly curved, but arbitrarily curved ? 
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